Semi-supervised Learning for Stream Recommender Systems

نویسندگان

  • Pawel Matuszyk
  • Myra Spiliopoulou
چکیده

Recommender systems suffer from an extreme data sparsity that results from a large number of items and only a limited capability of users to perceive them. Only a small fraction of items can be rated by a single user. Consequently, there is plenty of unlabelled information that can be leveraged by semi-supervised methods. We propose the first semisupervised framework for stream recommender systems that can leverage this information incrementally on a stream of ratings. We design several novel components, such as a sensitivity-based reliability measure, and extend a state-of-the-art matrix factorization algorithm by the capability to extend the dimensions of a matrix incrementally as new users and items occur in a stream. We show that our framework improves the quality of recommendations at nearly all time points in a stream.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

An iterative semi-explicit rating method for building collaborative recommender systems

Collaborative filtering plays the key role in recent recommender systems. It uses a user-item preference matrix rated either explicitly (i.e., explicit rating) or implicitly (i.e., implicit feedback). Despite the explicit rating captures the preferences better, it often results in a severely sparse matrix. The paper presents a novel iterative semi-explicit rating method that extrapolates unrate...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis

The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015